Foreground Object Detection in Changing Background Based on Color Co-Occurrence Statistics
نویسندگان
چکیده
This paper proposes a novel method for detecting foreground objects in nonstationary complex environments containing moving background objects. We derive a Bayes decision rule for classification of background and foreground changes based on inter-frame color co-occurrence statistics. An approach to store and fast retrieve color co-occurrence statistics is also established. In the proposed method, foreground objects are detected in two steps. First, both foreground and background changes are extracted using background subtraction and temporal differencing. The frequent background changes are then recognized using the Bayes decision rule based on the learned color co-occurrence statistics. Both short-term and longterm strategies to learn the frequent background changes are proposed. Experiments have shown promising results in detecting foreground objects from video containing wavering tree branches and flickering screens/water surface. The proposed method has shown better performance as compared with two existing methods.
منابع مشابه
Statistical Background Modeling Based on Velocity and Orientation of Moving Objects
Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...
متن کاملFire detection using statistical color model in video sequences
In this paper, we propose a real-time fire-detector that combines foreground object information with color pixel statistics of fire. Simple adaptive background model of the scene is generated by using three Gaussian distributions, where each distribution corresponds to the pixel statistics in the respective color channel. The foreground information is extracted by using adaptive background subt...
متن کاملLogo and Trademark Retrieval in General Image Databases Using Color Edge Gradient Co-occurrence Histograms
In this paper, we present a logo and trademark retrieval system for general, unconstrained, color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in images, in ...
متن کاملContent-based retrieval of logo and trademarks in unconstrained color image databases using Color Edge Gradient Co-occurrence Histograms
In this paper, we present an algorithm that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme on compound color objects, for the retrieval of logos and trademarks in unconstrained color image databases. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate repre...
متن کاملVideo object segmentation in rainy situations based on difference scheme with object structure and color analysis
A scheme based on a difference scheme using object structures and color analysis is proposed for video object segmentation in rainy situations. Since shadows and color reflections on the wet ground pose problems for conventional video object segmentation, the proposed method combines the background construction-based video object segmentation and the foreground extraction-based video object seg...
متن کامل